
 

196 

  
Abstract—The task of sequential pattern mining is to 

discover the complete set of sequential patterns in a given 
sequence database with minimum support threshold. But in 
practice, minimum support some time is defined afterward, or 
need to be adjusted to discover information that interest to 
knowledge workers. In the same time, the problem of discover 
sequential patterns in a incremental database is an essential 
issue in real world practice of datamining. This paper discusses 
the issue of maintaining discovered sequential patterns when 
some information is appended to a sequence database.  Many 
previous works based on Apriori-like approaches are not 
capable to do so without re-running previously presented 
algorithms on the whole updated database. We propose a novel 
algorithm, called DSPID, which takes full advantage of the 
information obtained from previous mining results to cut down 
the cost of finding new sequential patterns in an incremental 
database.  

 
 
Keywords—Data mining, Sequential patterns, condensed 
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I. INTRODUCTION 
he major issue of data mining in the recent years has been 
focused on mining sequential patterns in a set of data 
sequence.  Most real world database contains records with 

time stamp, such as sensor, scientific, monitoring and 
e-Learning data.   The issue of sequential pattern mining was first 
introduced by Agrawal and Srikant [2] in 1995: Given a set of 
sequences, where each sequence consists of a list of itemsets, 
and given a user-specified minimum support threshold (min 
support), sequential pattern mining is to find all frequent 
subsequences whose frequency is no less than min support. 
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Mining sequential patterns is a task of finding the full set of 
frequent sequences that satisfy a given minimum support in a 
sequence database. Sequential pattern mining has gradually 
become an important data mining task, with broad applications, 
including market and customer analysis, web log analysis, 
intrusion detection system (IDS) and mining XML query 
access patterns. The revealed information and knowledge are 
widely used in various applications, including learning status 
analysis, decision support, and fraud detection. It is one of the 
most important domains of Data Mining. In these few years 
many approaches have been proposed to mining sequential 
patterns.  The Sequential pattern mining is now widely used in 
many areas, such as the analysis of internet intrusion detection, 
e-Learning sequential patterns, web user behaviors analysis, 
customer buying behavior analysis and etc.  

The major problem in previous works [1], base on 
apriori-like approach, of this field is that generate too many 
candidate sequences during the mining process, which increase 
the requirement of hardware and system runtime. And then 
closed itemset and maximal itemset, sequence, concept has 
been introduced [2][3][4][5][6] to mitigate these drawbacks. 
Apriori employs a bottom-up searching method that 
enumerates every single frequent sequence. This means in 
order to generate a frequent sequence of length l, it must 
generate all 2l of its subsequences since they too must be 
frequent. This exponentially growing complexity 
fundamentally restricts Apriori-like algorithms to discover only 
short patterns.  This mining algorithm has a consequence of the 
following problems: sequential pattern mining often generates 
huge number of candidate patterns in an exponential curve, 
which is inevitable when the database consists of long frequent 
sequential patterns. For example, assume the database contains 
a frequent sequence 〈i1,…,ik〉, k=20, it will generate 220 -1 
frequent subsequences which are essentially redundant 
patterns. Even though  many previous proposed researches 
have alleviate this drawback via join method generating less 
candidates, but these redundant is still a major problem that 
require more memory space to store them and more machine 
cycle to handle,  generate and prune, these unnecessary process.  
Mining sequential patterns with maximal sequential patterns 
may largely reduce the number of patterns generated during the 
process and without losing any information, which is because 
of it can be used to derive the complete set of sequential 
patterns. In previous studies [4][5], which have proposed two 
novel mining algorithms, Fast Accumulated Lattice(FAL) 
algorithm and  Fast Mining Maximal Sequential 
Patterns(FMMSP),  scan sequence database only once, to our 
knowledge the scan times of data base these algorithms are less 
than the FP-tree which needs to scan database twice, and further 
more mining sequential patterns without generating unneeded 
candidates which are to be pruned in the following mining 
process.  However, in some real world cases the requirement of 
memory space is critical that demanding a novel algorithm to 
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minimize, or prevent, generating non-maximal frequent 
sequences.  

Many previous researches gave contributions to mining 
sequential patterns efficiently of temporal data.  Agrawal and 
Srikant proposed a generalized sequential pattern mining 
algorithm [6], called GSP, which applied the candidate 
generation and test, gen and prune, principle. First, it  scan 
database to discover all frequent 1-sequences, sequence length 
equals to 1. Second, generates candidate of 2-sequences from 
the sets of frequent 1-sequences.  That is, in general, generating 
candidate (i+1)-sequences from the sets of frequent 
i-sequences. 

To alleviate the drawback of generating huge amount of 
candidates in the mining process, Garofalakis has proposed 
SPIRIT[7], a Apriori-like algorithm, to generate less candidates 
via constrains. Jia-Wei Han proposed Prefixspan[8] and 
Freespan[9] algorithms, which are based on projected databases. 
These 2 algorithms applied a divide-and-conquer approach, 
generating many smaller projected databases of the original 
sequence database, and mining the frequent sequences in each 
projected databases by discovering participated frequent 
patterns. In real world data mining application, database is 
updated from time to time, it is incremental. In this case, many 
new sequences are newly appended to database, altered the 
frequent sequential patterns set.  The consequence is the 
previous mining result of frequent sequence has to change with 
the updated sequences. A common used strategy is rebuilding 
the frequent sequences from the most up to date database. This 
is very inefficient especially when dealing with huge amount of 
data. Obviously, rebuilding from scratch didn’t take the 
advantage of pervious work. Many researches of incremental 
mining of sequential patterns were developed in recent years. 
An incremental method SPADE[18] of mining sequential 
patterns was proposed by Zaki. In this paper, equivalent class 
was introduced to construct sequence lattice in incremental 
manner. Newly read sequence data from sequence database are 
updated into the lattice. Other research has presented diverse 
methods solving the incremental sequence database problem in 
[23][24]. Many proposed methods on incremental sequence 
mining have to tackle the problems of dealing with the newly 
append sequences to the original sequential database to form 
into previous constructed frequent sequential patterns, and to 
adjust the sequential patterns with change of minimum support, 
which is usually change during after, or during, the mining 
process.  In the practice fields, e-commerce and eLearning 
applications, facing a incremental sequence database is 
inevitable. How to save mining time with less memory is 
essential to evaluate sequential patterns algorithm. In this 
aspect, not to rebuild previous construct sequential patterns is 
almost an essential part to solve this problem. 

 In this paper we propose a new algorithm, DSPID, to 
alleviate this problem via mining frequent sequences in a form 
of maximal sequential pattern, rather than mining the full set of 
frequent sequences. The reason why we mine maximal 
sequential patterns is that they are compact representations of 
frequent sequential patterns.  

In our point of view, the main contributions of this paper are: 
constructing maximal sequence model without generating 
redundancies of candidates and non-maximal sequences in the 
process require less memory space, append new sequence to 

data model without rebuilding it, smaller searching space and 
categorized frequent sequential patterns. 

The rest of this paper is organized as follows. In section 2, we 
define the basic definitions and properties of sequential patterns.  
The algorithm of DSPID and its example are given in section 3 
and 4, respectively. Section 5 gives conclusion and future work. 
 

II. PRELIMINARY 
The problem can be described as follows: Assume I={i1, i2 , 

… , in} be a set of all items (or events). An itemset is a 
non-empty set of finite items. A sequence is an ordered list of 
itemsets. A sequence s is denoted as s=〈i1,…,i|s|〉, where ii is an 
itemset, that is , ii  I for 1≤i≤k. si is also defined as an element 

of sequence, and denoted as (x1x2…xl), where xj I for 1≤j≤l. In 

fact, the brackets are usually omitted if |ii|=1. An item can 
appear at most once in an element of a sequence, but can appear 
more than one time in different elements of a sequence. The 
length of a sequence is defined as the number of instances of 
items in a sequence. A sequence with length l is called an 
l-sequence. A sequence x =〈x1,x2,…,xn〉is called a subsequence 

of y=<y1,y2,…,ym> and y a super sequence of x, denoted as x y, 

y contain x, if there exist integers 1≤j1＜j2＜…＜jn≤m such 
that . A sequence database D is a 

set of tuples denoted as 〈SID, s〉, where SID is a sequence 
identification number and s is a sequence. Given a k-items 
sequence s, its support is supp(s) which is defined as the 
number of transactions in D that including s. Apriori-like 
algorithm mine all the frequent sequences from D requires 
finding all the sequences that support no less than the minimum 
support and this has to search through the huge search space 
which is given by the power set of I. 

Cardinality of s denotes the number of distinct SID values in 
the id-list of sequence database for a sequence s. 
The set of maximal sequence is defined as 

{ }''| ssthatsuchSsandSssMS ≺∈¬∃∈= . 
A sequence X is maximal sequence if there exists no 

super-sequence Y  X, with the same support as X [6].  
Let SDB be a sequence database, minimum support is 

minsup, and NDB be a appended sequence database. PDB is 
updated sequence database that PDB=SDB+NDB. When 
original sequence database has changed the algorithm must 
make use of the previously discovered information to adapt 
with the change. The idea is constructing a data model 
representing the original sequence database. The data model 
has to change with original sequence database without 
rebuilding the data model. This data model is transform from 
original sequence database without distortion, DM=f(SDB). 
When new sequence has been appended to original sequence 
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database the data model also change dependently. 
DM’=f(SDB)+ f(NDB). 

III. DSPID Algorithm 
DSPID provides a categorized, in frequency, data model 

represent original sequence database without distortion. With a 
approach of incremental strategy, sequences of D are read one 
by one, transformed and load into the data model, Frequent 
Sequences Set (FSS).  Sequence S read from database is 
compared to the existed sequences in the FSS. Comparison is in 
descending order in each array, but in ascending order from F1 
to higher frequent sequence array. The relationship between S 
and SFSS are , ,  or S 
and SFSS are partially mutual to each other. That is mutual 
sequence  and . The new sequence 
S is processed according to the type of relationship. The first 
case is simple; we just append the new sequence S to the array 
of F1. In case 2 and 3, the mutual part is upgraded to higher 
frequent array. In case 4, S is upgraded to higher frequent array. 
Each frequent array contains maximal sequences only. For 
example, sequence 〈ABC〉 and 〈C〉 will not coexist in the 

same array because 〈ABC〉 is the maximal sequence of 〈C

〉.  
 
===================================== 
//Input: D 
//Output: FSS  
Initial 2-dimension array FSS={ F1, F2, …, F1} 
 
Function Upgrade(S){ 

move S from allocated array to higher frequent array } 
For each sequence in D{ 

Read sequence S from sequence database D 
For n= 1 to Top{  

Case S  :{ 
append S to Fn ; 
break; 
} 

Case  S  Fn.sequence  :{ 
Upgrade(S); 
mark S; 
} 

Case  S  Fn.sequence:{ 
Upgrade(Fn.sequence); 
Mark Fn.sequence 
} 

Case  S  Fn.sequence=Smutual :{ 
Upgrade(Smutual); 
S= Smutual; 
} 

} 
} 
===================================== 

 
Fig. 1  DSPID algorithm 

 

IV. EXAMPLE 
We will demonstrate how the DSPID is capable to build a data 
model representing original sequence database, minimize the 
searching space and accelerate runtime with example. In Figure.  
2 is a simple sequence database, D. SID represents Student 
Identifier. The itemset include A, B, C, D and E. 
 
 

SID Sequence 
1 ACD 
2 ABCE 
3 BCE 
4 BE 
5 ABCDE 

(D) 
 

F1 F2 F3 F4 
    
    
    

Empty (FSS) 
Fig.2 An original sequence database D and data model FSS 

 
First, we consider the construction of data model with 

DSPID algorithm. When read in the first sequence 〈ACD〉 
from database D. Figure.3 shows the new sequence is allocated 
to frequent-1 array, F1. And new sequence is compare with all 
sequences in F1. Since there is no other sequence in F1 the 
algorithm stops the comparison process. 

 
F1 F2 F3 F4 

ACD    
    
    

 
Fig. 3   FSS containing 〈ACD〉 

 
In Figure.4, continue to read in 〈ABCE〉.  First, the new 
sequence is allocated to F1, next to previous sequence. 
Compare sequence 〈ABCE〉 with 〈ACD〉, the mutual 

sequence of 〈ACD〉 and 〈ABCE〉 is 〈AC〉 which will be 
upgraded to higher frequency array F2. As shown in Fig 4.  
  

F1 F2 F3 F4 
ACD AC   
ABCE    
    

 
Fig. 4  FSS with 〈ACD〉 and 〈ABCE〉 and their mutual 

sequence 〈AC〉 
 

The next sequence reading from D is 〈BCE〉. Compare 〈BCE

〉with F1, found out that sequence 〈BCE〉 is contained by 〈
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ABCE〉, so 〈BCE〉 is upgraded to F2. Sequence 〈BCE〉 

is a new sequence to F2.  The mutual sequence of 〈BCE〉 and 

〈AC〉 is 〈C〉 which will be upgraded to F3.  As shown in 

Figure. 5.  The sequence 〈BCE 〉has been upgraded from F1 
to F2. The upgrade algorithm will leaves a marked, under line, 
sequence of 〈BCE〉 in F1.  

F1 F2 F3  
ACD AC C  
ABCE    
BCE    

Allocate 〈BCE〉to F1 
F1 F2 F3  
ACD AC   
ABCE BCE   
BCE    

Upgrade 〈BCE〉to F2 
 

F1 F2 F3 F4 
ACD AC C  
ABCE BCE   
BCE    

 
Fig. 5 example of upgrading mutual sequence 

 
Next sequence read from database D 〈BE〉 is contained by 〈
ABCE〉 of F1, so 〈BE〉 is upgraded to F2. Compare 〈BE

〉 with sequences in F2. Obviously, 〈BE〉 is contained by 〈
BCE〉 so 〈BE〉 is upgraded to F3. See Figure 6. 
 

F1 F2 F3 F4 
ACD AC C  
ABCE BCE   
BCE    
BE    

Allocate 〈BE〉 to F1 
 

F1 F2 F3 F4 
ACD AC C  
ABCE BCE   
BCE BE   
BE    

Upgrade 〈BE〉 to F2 
 

F1 F2 F3 F4 
ACD AC C  
ABCE BCE BE  
BCE BE   
BE    

 
Fig. 6 upgrading 〈BE〉 

 

Last sequence 〈ABCDE〉 contains all sequences in F1, so 〈
ACD〉〈ABCE〉 are upgraded to higher frequency array F2.  As 
shown in Fig. 7. 
 

F1 F2 F3 F4 
ACD AC C  
ABCE BCE BE  
BCE BE   
BE    
ABCDE    

Allocate 〈ABCDE〉 to F1 
 
 
 
 
 
 

F1 F2 F3 F4 
ACD AC C  
ABCE BCE BE  
BCE BE   
BE ACD   
ABCDE    

Upgrade 〈ACD〉 to F2 
 

F1 F2 F3 F4 
ACD AC C  
ABCE BCE BE  
BCE BE AC  
BE ACD   
ABCDE    

Upgrade 〈AC〉to F3 
 

F1 F2 F3 F4 
ACD AC C C 
ABCE BCE BE  
BCE BE AC  
BE ACD   
ABCDE    

Upgrade 〈C〉to F4 
 

F1 F2 F3 F4 
ACD AC C C 
ABCE BCE BE  
BCE BE AC  
BE ACD   
ABCDE ABCE   

Upgrade 〈ABCE〉 from F1 to F2 
 

F1 F2 F3 F4 
ACD AC C C 
ABCE BCE BE  
BCE BE AC  
BE ACD BCE  
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ABCDE ABCE   
Upgrade 〈BCE〉 from F2 to F3 

 
F1 F2 F3 F4 

ACD AC C C 
ABCE BCE BE BE 
BCE BE AC  
BE ACD BCE  
ABCDE ABCE   

Upgrade 〈BE〉 from F3 to F4 
 

F1 F2 F3 F4 
   C 
   BE 
  AC  
 ACD BCE  
ABCDE ABCE   

Hide marked sequences in FSS 
 
 

F1 F2 F3 F4 
ABCDE ACD AC C 
 ABCE BCE BE 

Display FSS in compact format 
 

Fig.6 Complete FSS of D 
 

If we set the threshold to 3 then the frequent sequences are 
given by DSPID algorithm immediately via the FSS table. The 
frequent sequences are 〈AC:3〉〈BCE:3〉〈C:4〉and 〈BE:4

〉.  

V. CONCLUSION 
Compare to previous works the advantages are: No 

candidates were generated during DSPID mining process that 
saves a lot of memory unit both in hard disk and RAM. Search 
space is no longer an issue to DSPID algorithm because the 
output is a categorized maximal frequency sequence arrays that 
can be set to any threshold or minsup. This gives knowledge 
worker privilege to adjust the threshold according their domain 
knowledge.   

Unfortunately, Apriori-like algorithms may fail to extract all 
the frequent sequences from dense data sets, which contain 
strongly correlated sequences and long frequent sequential 
patterns.  

Apriori involves a phase for finding patterns called frequent 
itemsets. A frequent itemset is a set of items appearing together in a 
number of database records meeting a user-specified threshold. 
Apriori employs a bottom-up search that enumerates every single 
frequent itemset. This implies in order to produce a frequent itemset of 
length; it must produce all of its subsets since they too must be 
frequent. This exponential complexity fundamentally restricts 
Apriori-like algorithms to discovering only short patterns. 

Such data sets are, in fact, very hard to mine since the Apriori 
closed-downward principle does not guarantee an effective 
pruning of candidates, while the number of frequent sequences 

grows up very quickly as the minimum support threshold is 
decreased.  

Many studies have incept the concept to elaborate all 
frequent pattern mining to more compact results and 
significantly better efficiency of memory usage. Our study 
shows that this is usually true when the number of frequent 
patterns is extremely large, in this case the number of frequent 
maximal sequential patterns is also tend to be very large. In this 
paper, we proposed DSPID, a novel algorithm for mining 
frequent maximal sequential sequences. It has improved the 
drawback of the candidate maintenance-and-test paradigm, 
constructing more compact searching space compare to the 
previously developed maximal pattern mining algorithms. 
DSPID adopts a breadth-first method can output the frequent 
maximal patterns online.  
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